
TWILIO
INTEGRATION
FOR MANGO

WHITE PAPER

2

This document will take you through the steps
set to configure a scripting event handler to send
text messages through the Twilio API. We will walk
through a number of advanced features available in
the Mango Scripting environment.

 O A Mango v4 instance with access to the internet
 O An active Twilio developer account
 O A cell phone to receive text messages

Twilio Account

Before you get started you will need to create an
account with Twilio. Here is a great guide on how
to send your first text message https://www.twilio.
com/en-us/use-cases/commerce-communications/
account-notifications/build

Once you have successfully sent a text message
with your Twilio we can move on to setting up data
points.

Below is a diagram of what we will be
configuring within Mango

OVERVIEW

REQUIREMENTS

Data Point Event
Detector

Scripting
Event

Handler

HTTP
Post

Twilio
API

Text
Message

https://www.twilio.com/en-us/use-cases/commerce-communications/account-notifications/build
https://www.twilio.com/en-us/use-cases/commerce-communications/account-notifications/build
https://www.twilio.com/en-us/use-cases/commerce-communications/account-notifications/build

3

DATA POINT
EXAMPLE

For this, we will create a virtual data point that will be used to test the text message. You could replace this
virtual point with any other data point in a production system..

1. Create a Virtual data source within your Mango instance. We are making a virtual point as a test. But you can
connect real data sources for the production system.

2. Create a binary virtual data point that is settable.

4

/**
 * Called when the Mango event is raised.
 */
function eventRaised(event) {
 console.log(event)
}

/**
 * Called when the Mango event is
 * acknowledged (the event may still be active).
 */
function eventAcknowledged(event) {
 console.log(event);
}

/**
 * Called when the Mango event returns to normal
 * or is deactivated (e.g. on shutdown).
 */
function eventInactive(event) {
 console.log(event);
}

Make sure you are using the Graal.js engine and ensure that your script has super admin privileges.
The Graal.js is a Javascript engine that allows you to run Javascript code within the Java Virtual Machine.
Providing you with a quick and flexible scripting environment.

3. Before we create an event detector we will first
create a scripting event handler that will send the
text message. Before you do this you will need to
make sure you have your Twilio account SID, Auth
token, and Twilio number on hand. If you have not
set this up yet, please follow the Twillio guide at
https://www.twilio.com/docs/usage/tutorials/how-
to-use-your-free-trial-account#sending-sms-and-
mms-messages

If you navigate to this path: “/ui/help/event-handlers/
help/script-event-handler” on your Mango instance
you will find the help doc on the scripting event
handler. You will see that the scripting event
handler provides us with 3 callbacks that will be
executed by the event handler on those specific
events.

https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#sending-sms-and-mms-messages
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#sending-sms-and-mms-messages
https://www.twilio.com/docs/usage/tutorials/how-to-use-your-free-trial-account#sending-sms-and-mms-messages

5

function sendSMS(body, from, to, token, SID) {

// Create the authorization header using the provided token and SID.

let auth = ${SID}:${token};

// Create an HTTP client and set up the request to send an SMS message using the Twilio API.

const client = HttpClients.createDefault();

const requestBuilder = RequestBuilder.post()

.setUri(https://api.twilio.com/2010-04-01/Accounts/${SID}/Messages.json)

.addHeader(‘Authorization’, ‘Basic ‘ + Base64.getEncoder().encodeToString(StandardCharsets.UTF_8.encode(auth).array()))

.addHeader(‘Content-Type’, ‘application/x-www-form-urlencoded’);

// Add the message content, sender phone number, and recipient phone number as parameters in the request.

const params = [

new BasicNameValuePair(‘Body’, body),

new BasicNameValuePair(‘From’, from),

new BasicNameValuePair(‘To’, to)

];

// Set the request entity to be the encoded form parameters.

try {

const entity = new UrlEncodedFormEntity(params);

requestBuilder.setEntity(entity);

} catch (e) {

console.error(e);

}

// Build the HTTP POST request and execute it using the HTTP client.

const httpPost = requestBuilder.build();

const response = client.execute(httpPost);

// Return the HTTP response object.

return response;

}

To begin we will be providing a help function that
will utilize the Twilio API and create an HTTP post.
It is beyond the scope of this document to explain
the full Mango scripting environment. The helper
function provided creates an HTTP post according
to the Twilio API and injects your message and
Twilio authentication tokens into the post.

Help function:
Function parameters: Body: The message that will
be sent via text message

 O From: Your Twilio number
 O To: The receiving number
 O Token: Your Twilio authentication token
 O SID: Your Twilio account number

6

Lastly, we need to import some Java types for the sendSMS function. These will be put right at the top of
the script.

Next, we will add some code to the eventRaised function which is called when any event detector that has
been linked to the event handler goes active.

When Mango calls this function it passes the event information into the eventRaised() function. We can use
this to build our text messages. You can see below that we extract the alarm level, point tag, event message,
and event timestamp and use a javascript string literal to create the text message. We then pass this as well
as the other three variables to the sendSMS function.

const HttpClients = Java.type(‘org.apache.http.impl.client.HttpClients’);
const RequestBuilder = Java.type(‘org.apache.http.client.methods.RequestBuilder’);
const UrlEncodedFormEntity = Java.type(‘org.apache.http.client.entity.UrlEncodedFormEntity’);
const BasicNameValuePair = Java.type(‘org.apache.http.message.BasicNameValuePair’);
const Base64 = Java.type(‘java.util.Base64’);
const StandardCharsets = Java.type(‘java.nio.charset.StandardCharsets’);

function eventRaised(event) {
 let context = event.getContext();
 let body = `${event.getAlarmLevel()} event at ${context.point.getTags().Site} - ${event.
getMessageString()} has transitioned to active at ${event.getFullPrettyActiveTimestamp()}`
 sendSMS(body,’+1111222333’,’+1111222333’,”YOUR TOKEN”,”YOURSID”)
}

7

const HttpClients = Java.type(‘org.apache.http.impl.client.HttpClients’);
const RequestBuilder = Java.type(‘org.apache.http.client.methods.RequestBuilder’);
const UrlEncodedFormEntity = Java.type(‘org.apache.http.client.entity.UrlEncodedFormEntity’);
const BasicNameValuePair = Java.type(‘org.apache.http.message.BasicNameValuePair’);
const Base64 = Java.type(‘java.util.Base64’);
const StandardCharsets = Java.type(‘java.nio.charset.StandardCharsets’);

/**
 * Called when the Mango event is raised.
 */
function eventRaised(event) {
 let context = event.getContext();
 let body = `${event.getAlarmLevel()} event at ${context.point.getTags().Site} - ${event.getMessageString()} has
transitioned to active at ${event.getFullPrettyActiveTimestamp()}`
 sendSMS(body,’+1111222333’,’+1111222333’,”YOUR TOKEN”,”YOURSID”)
}

/**
 * Called when the Mango event is
 * acknowledged (the event may still be active).
 */
function eventAcknowledged(event) {

}

/**
 * Called when the Mango event returns to normal
 * or is deactivated (e.g. on shutdown).
 */
function eventInactive(event) {

}

function sendSMS(body, from, to, token,SID) {

 let auth = `${SID}:${token}`
 console.log(auth)
 const client = HttpClients.createDefault();
 const requestBuilder = RequestBuilder.post()
 .setUri(`https://api.twilio.com/2010-04-01/Accounts/${SID}/Messages.json`)
 .addHeader(‘Authorization’, ‘Basic ‘ + Base64.getEncoder().encodeToString(StandardCharsets.UTF_8.encode(auth).
array()))
 .addHeader(‘Content-Type’, ‘application/x-www-form-urlencoded’);

 const params = [
 new BasicNameValuePair(‘Body’, body),
 new BasicNameValuePair(‘From’, from),
 new BasicNameValuePair(‘To’, to)
];

 try {
 const entity = new UrlEncodedFormEntity(params);
 requestBuilder.setEntity(entity);
 } catch (e) {
 console.error(e);
 }

 const httpPost = requestBuilder.build();

 const response = client.execute(httpPost);
 return response;
}

This is how your code block should look at the end.

8

4. We are now ready to create an event detector on our point and link it to the event handler. Head back to
the virtual data point and create an event detector. An important thing to note is that in the above example,
we pull a tag from the data point. If your point does not have that tag the script will error out.

Now link the event detector to your event handler.

9

TEST THE
CONFIGURATION

To test your configuration navigate to the point details page in Mango of the data point that you created
above and toggle the value in a manner that will trigger the event detector you just configured. If all goes well
you should receive a text message. If you do not get a message, see below for some troubleshooting tips.

Twilio trial account
 O The free account uses a toll-free number which limits the amount of characters in a text message. If you

are using a free account try reducing the text message length.

Authentication
 O Log your HTTP response so you can debug. Your tokens may be incorrect. This will log the Twilio API

response to your Mango ma.log file. An error code will be provided in the response. The definition of each
error code can be found here : https://www.twilio.com/docs/api/errors

const response = client.execute(httpPost);
console.log(response)
return response;

https://www.twilio.com/docs/api/errors

10

Published by
Radix IoT 2023

Radix IoT, LLC
14555 N. Dallas Parkway #125
Dallas, TX 75254
United States

For more information, please contact
our Customer Support Center.
Email: info@radixiot.com

Subject to changes and errors. The information
given in this document only contains
general descriptions and/or performance
features which may not always specifically
reflect those described, or which may undergo
modification in the course of further development
of the products. The requested performance
features are binding only when they are expressly
agreed upon in the concluded contract.

radixiot.com

